Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADER Schemes on Adaptive Triangular Meshes for Scalar Conservation Laws

ADER schemes are recent finite volume methods for hyperbolic conservation laws, which can be viewed as generalizations of the classical first order Godunov method to arbitrary high orders. In the ADER approach, high order polynomial reconstruction from cell averages is combined with high order flux evaluation, where the latter is done by solving generalized Riemann problems across cell interfac...

متن کامل

Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes

We consider a nonlinear finite volume (FV) scheme for stationary diffusion equation. We prove that the scheme is monotone, i.e. it preserves positivity of analytical solutions on arbitrary triangular meshes for strongly anisotropic and heterogeneous full tensor coefficients. The scheme is extended to regular star-shaped polygonal meshes and isotropic heterogeneous coefficients.

متن کامل

Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes

Article history: Received 1 November 2012 Received in revised form 16 July 2013 Accepted 23 July 2013 Available online 2 August 2013

متن کامل

Central WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes

We derive Godunov-type semidiscrete central schemes for Hamilton–Jacobi equations on triangular meshes. High-order schemes are then obtained by combining our new numerical fluxes with high-order WENO reconstructions on triangular meshes. The numerical fluxes are shown to be monotone in certain cases. The accuracy and high-resolution properties of our scheme are demonstrated in a variety of nume...

متن کامل

Finite volume Hermite WENO schemes for solving the Hamilton-Jacobi equations II: Unstructured meshes

Abstract. In this paper, we present a new type of Hermite weighted essentially nonoscillatory (HWENO) schemes for solving the Hamilton-Jacobi equations on the finite volume framework. The cell averages of the function and its first one (in one dimension) or two (in two dimensions) derivative values are together evolved via time approaching and used in the reconstructions. And the major advantag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2014

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2014.02.023